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1. Introduction

To more accurately mirror the world, economic models have become increasingly

complex.  In many cases, it is necessary to find numerical solutions to parameterized

versions of the models if one is to obtain information on transitional dynamics.

Optimization versions of vintage capital models are an example of such models.

There are two general methods for modeling technology, “embodied” and

“disembodied.”  Vintage capital or “embodied technology” models are models in which

technology is inherent in the capital stock of the economy (i.e. the physical equipment,

buildings, etc.).  The embodiment of technology implies a heterogeneous capital stock,

and that it is necessary to invest in new capital if the economy is to reap the benefits of

new technology.  It is obvious that much of the technological growth in the world is of

the embodied variety, however, most economic models assume technology is

disembodied owing to the difficulty of tracking multiple capital stocks.

This paper discusses numerical optimization methods that are capable of handling

the large-scale nature of vintage capital models, and their application to the three basic

neoclassical vintage capital models: putty-putty, clay-clay, and putty-clay.1  The

optimization methods used in this paper have the potential for application to a wide array

of economic models.  Diminishing returns in both productive factors and utility often

implies that models can be posed as convex programming problems, which mathematical

theory states will have global solutions (assuming a solution exists).  The algorithms

                                                
1 A detailed description of the results can be found in Berger (2001).
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discussed in this paper are guaranteed to converge when applied to convex programming

problems.

2. Optimization Method 1: Interior Point Method

The algorithms used to obtain the numerical solutions of Berger (2001) are part of

the general class of “path-following” algorithms.  An interior point method was utilized

to obtain approximations to the solutions of the putty-putty and clay-clay models.

Interior point methods are so named because the choice variables lie in the strictly

feasible set of the optimization problem, ( )P , at each iteration.  This is achieved by the

addition of penalty functions, 1f , to the objective function, 0f .  The penalty functions are

functions of the constraint values.  The penalty functions increase in value as the

boundary of the feasible set is approached, and take on infinite values at the boundary,

thereby creating a “barrier” to exiting the feasible set. The penalty functions are

multiplied by a positive scalar, kµ , which is monotonically decreasing in the iterations, k.

The solutions to this barrier problem, ( )( )kP µ , as 0kµ → , comprise the “central path”

which is followed to the solution of ( )P .  Below is the formal statement of the standard

problem ( )P  and the resulting optimality conditions.
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( )P  is a general problem formulation because equality constraints can be included by

splitting the constraint into two inequality constraints.  The lagrangian for ( )P  is:

0( ; ) ( ) ' ( )L x f x G xλ λ= + (1)

This leads to the optimality conditions of ( )P :

0 ( ) ' 0f G x λ∇ + ∇ = (2)

( ) 0G x ≤ (3)

0λ ≥ (4)

( ) 0G xΛ = (5)

where Λ  is a diagonal matrix with λ  on the diagonal.  (5) is the complementarity

condition stating that either iλ , ig , or both must equal zero for all i.  Let the penalty

function be the standard log barrier function, such that for mz R∈ :

1
ln( )    if     0  

ln( )
           otherwise

m
i ii

z z i
z =

 > ∀= 
∞

∑ (6)

Thus, ( )( )kP µ ,the log barrier version of the standard problem, is:
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( )0Minimize    ( ) ln ( )

over     
k

n

f x G x

x R

µ− −

∈
( )( )kP µ

where kµ  is a positive scalar.  This leads to the optimality conditions:

1
0 ( ) ' ( ) 0kf G x G x eµ

−
∇ + ∇ − = (7)

( ) 0G x < (8)

where ( ) m mz diag z R ×= ∈  and (1, ,1) ' me R= ∈… .  (8) must hold at a solution because

otherwise the value of the objective is infinity by the definition of the penalty function.

Convex programming problems are minimization problems in which the objective

function and the inequality constraints (written as 0ig ≤ ) are convex functions, and the

equality constraints (written as 0ig = ) are affine functions.  Theory states that all

solutions to convex programming problems are global solutions.  Further, when a

solution exists, convex programming problems with strictly convex objective functions

have a unique, global solution.

For convex programming problems, Proposition 4.1.1 of Bertsekas (1999) states

that “every limit point of a sequence { }kx  generated by a barrier method is a global

minimum of the original constrained problem.” In other words, the sequence { }kx , the

solutions to the problems ( )( )kP µ  as 0kµ → , goes to a global minimum, x , of ( )P .

Both ( )P  and ( )( )kP µ  can be rewritten in equivalent equilibrium formats where

slack variables, restricted to be non-negative, are added to the inequality constraints to

make them equality constraints.  This is advantageous because of the resulting structure

of the Jacobian of the optimality conditions, and readily obtained dual variables.  By two



5

problems being “equivalent” it is meant that a stationary point of one problem is also a

stationary point of the other.

The equilibrium formatted problem, ( )E and its corresponding lagrangian follow:

0Minimize    ( )

over
subject to:
    0
    ( ) 0

n

f x

x R

s
G x s

∈

≥
+ =

( )E

( )0( , ; ) ( ) ' ( ) '( )L x s f x G x s sλ λ γ= + + + − (9)

(9) leads to the optimality conditions of ( )E :

0 ( ) ' 0f G x λ∇ + ∇ = (10)

0          λ γ λ γ− = ⇒ = (11)

( ) 0G x s+ = (12)

0s− ≤ (13)

0γ ≥ (14)

0     where     ( )s diag λΓ = Γ = (15)

It is simple to show that the optimality conditions of ( )P  are equivalent to those of ( )E .

( )( )kE µ , is formed by using the log barrier function to force s to lie in the positive

orthant.

0Minimize    ( ) ln( )

over          
subject to:
     ( ) 0

k
n m

f x s

x R s R

G x s

µ−

∈ ∈

+ =

( )( )kE µ
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It is not necessary to have an explicit non-negativity constraint for s since that will

necessarily be the case at a solution.  The lagrangian for ( )( )kE µ  is given by (16) and

followed by the corresponding optimality conditions:

( )0( , ; ) ( ) ln( ) ' ( )kL x s f x s G x sλ µ λ= − + + (16)

0 ( ) ' 0f G x λ∇ + ∇ = (17)

1 0          k kS e S eµ λ λ µ−− + = ⇒ = (18)

( ) 0G x s+ = (19)

0s ≥ (20)

where ( )S diag s= .  (18) and (19) imply that ( )s G x= −  and ( )1
( )k G x eλ µ

−
= − . Then

(7) is equivalent to (17); and (8) is equivalent to (19) combined with (20).  Therefore

( )( )kP µ  and ( )( )kE µ  are equivalent problems.  Hence, one can work with the

equilibrium form of the problem and be assured that the theoretical results corresponding

to convex programming and barrier problems will apply.

Most applications of the interior-point algorithm will not strictly follow the

central path to the solution but instead reduce kµ  by a variable amount at each iteration.

This was true in obtaining the results of Berger (2001).  For that paper, the variables also

were not restricted to lie in the strictly feasible region of ( )P  for all iterations. Instead,

using formulation ( )( )kE µ , only the restrictions that x, s, and λ are positive are enforced

at each iteration.  ( )( ) 0G x s+ →  with 0s > , but the solution at termination must be

checked to make sure that ( ) 0G x ≤  since s can converge to zero along with ( )G x  and
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therefore the solution at termination of the algorithm could lie just outside the boundary

of feasible set (by the value of the tolerance for the optimality conditions).  For many

applications, the level of this discrepancy is of little practical value (such as in the vintage

capital case).

The iterations use the Newton method and it remains to show that the method is

defined for each iteration.  We will do this by examining the Jacobian of the optimality

conditions of ( )( )kE µ .  In certain cases it is preferable, for numerical stability reasons, to

multiply (17) by a positive definite diagonal matrix D.  Without loss of generality (i.e.

D=I), (17) can be rewritten as:

( )0 ( ) ' 0D f G x λ∇ + ∇ = (21)

The Jacobian of the optimality functions can be written as:

1 2

3

0
0

0

M M
J M I

S

 
 =  
 Λ 

(22)

where

( )2 2
1 0 1( ) ( ) ' ,      n nM D f x G x M Rλ ×= ∇ + ∇ ∈ (23)

( )2 2( ) ' ,      n mM D G x M R ×= ∇ ∈ (24)

3 3( ),      m nM G x M R ×= ∇ ∈ (25)

with
2 2 2 2

1 1 2 2( ) ' ( ) ( ) ( )m mG x g x g x g xλ λ λ λ∇ = ∇ + ∇ + + ∇…

The Newton direction is 1
k k kd J g−= −  where kg , the vector of optimality

functions, and kJ are both evaluated at the thk  iteration values of x, s, and λ .  From the
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definition of kd , there is a unique Newton direction for each iteration if J is nonsingular.

J is nonsingular if only if there is a unique solution to the following system:

1 2

3

0
0

0

M M u a
M I v b

S w c

     
     =    
    Λ     

(26)

From (26), v and w can be solved in terms of u by the following method:

3w b M u= − (27)

1( )v S c w−= − Λ (28)

Substituting (27) and (28) into (26):

( )1 1
2 3 1 2 ( )M S M M u a M S c b− −Λ + = − − Λ (29)

From (29), the Newton step has a unique solution if and only if the matrix

( )1
2 3 1M S M M− Λ +  is nonsingular.  It will be shown that under certain conditions

( )1
2 3 1M S M M− Λ +  is positive definite and therefore nonsingular.

Proposition 1.  Let nx R+∈  (non-negative orthant) and ( )P  be a convex programming

problem. Then the Newton direction has a unique solution.

Proof.   As shown above, the Newton direction has a unique solution if and only if

( )1
2 3 1M S M M− Λ +  is non-singular.  Suppose nx R+∈  and ( )P  is a convex programming

problem.

First will be shown that 1
2 3M S M− Λ  is positive definite. Then it will be shown

that 1M  is positive semi-definite.  The sum of a positive definite and positive semi-
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definite matrix is positive definite and non-singular.  Hence, this is sufficient for the

proof.

From (24) and (25), 1 1
2 3 3 3' 'M S M DM S M DH H− −Λ = Λ = , where D is positive

definite and ( ) ( )1 1
1 12 2

3 ( )H S M S G x− −= Λ = Λ ∇ .

With no abstract constraints in ( )P , nx R+∈  implies that ( ) m nG x R ×∇ ∈  has rank

n, with m n≥ .  Then nul ( )( ) 0G x = . Since at each iteration 1S −  and Λ  are positive

definite diagonal matrices, this implies that nul ( ) 0H = . It is obvious that ( ) ' 0Hw Hw ≥ ,

and nul ( ) 0H =  implies that ( ) ' 0Hw Hw =  if and only if 0w = . Let 'Q H H= .  Then

' ' 'w H Hw w Qw= . Since ' 0   0w Qw w> ∀ ≠ , Q is positive definite. Since D is a

diagonal positive definite matrix, 1 1
3 3 2 3' 'DQ DH H DM S M M S M− −= = Λ = Λ  is positive

definite.

( )2 2
1 0 ( ) ( ) 'M D f x G x λ= ∇ + ∇ .  So, 1M  is positive semi-definite if and only if

2 2
0 ( ) ( ) 'f x G x λ∇ + ∇  is positive semi-definite.  If ( )P  is a convex programming problem

then 2
0 ( )f x∇ , the Hessian of the objective function, is positive semi-definite.  Similarly,

2 2 2 2
1 1 2 2( ) ' ( ) ( ) ( )m mG x g x g x g xλ λ λ λ∇ = ∇ + ∇ + + ∇… , and if ( )P  is a convex

programming problem, then each ig  is convex and 2
ig∇  is positive semi-definite.

Therefore, by the fact that a sum of positively weighted positive semi-definite matrices is

positive semi-definite, 2 ( ) 'G x λ∇  is positive semi-definite.  By the same fact,
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2 2
0 ( ) ( ) 'f x G x λ∇ + ∇  is positive semi-definite. Therefore, since D is a diagonal positive

definite matrix, 1M  is positive semi-definite. ,

The method of reducing kµ  in Berger (2001) was adapted from  Wright (1997).

At each iteration, kµ  is defined to be the average value of the complementarity

conditions (i.e. ( ' ) /k s mµ λ= ).  The initial guess for λ and s give 0µ .  A parameter

(0,1)σ ∈  determines by what fraction the next iteration should attempt to decrease kµ

( )1k kµ σµ+ = .  There will be a speed tradeoff in the choice of σ. A lower value of σ may

allow for fewer iterations if at each iteration the step stays close to the central path.

However, too small a value of σ may cause the step to diverge far enough from the

central path that the Newton method does not converge well on subsequent iterations.

3. Non-interior Path Following Algorithm

Solutions to the putty-clay model in Berger (2001) were obtained using a non-

interior path-following algorithm based on Burke and Xu (2000).  Burke and Xu,

however, present a non-interior path following algorithm for a linear complementarity

problem, whereas the putty-clay model is a general non-linear problem. As such a

problem, multiple local solutions are possible.

The following is the format of a general  non-linear optimization problem (except

for the abstract constraint on x� ):
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( )

0

0

1 2

Minimize    ( )

over   (non-negative orthant)
subject to:

( ) 0
where:

:

:
( ) ( ), ( ), , ( ) '     with  :

n

n

n m

n
m i

f x

x R

G x

f R R

G R R
G x g x g x g x g R R

+∈

≤

=

�
�

�

6
6

� � � �… 6

( )gnlP

The following is the lagrangian corresponding to ( )gnlP :

0( ; ) ( ) ' ( )L x f x G xλ λ= +� � � (30)

The first order optimality conditions are:

0 ( ) ( ) ' 0L f x G x
x

λ∂ = ∇ + ∇ ≥
∂

� �
�

(31)

( ) 0L G x
λ

∂ = ≤
∂

� (32)

Let ( , ) 'x x λ= � .  Let ( ) ,L LM x
x λ

∂ ∂ = − ∂ ∂ �
.  Then the Karush-Kuhn-Tucker (KKT)

conditions are equivalent to and are satisfied for an ( , )x v  combination of variables if:

( ) 0M x v− = (33)

0x ≥ (34)

0v ≥ (35)

0Vx = (36)

where ( )V diag v= .
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For non-interior path-following algorithms, penalty functions are not used.

Instead, the scalar 0kµ ≥  is a parameter in a function (2 2 1) ( )( , , ) : n m n m
kx v R Rφ µ + + +6 ,

where [ ]1 1( , , ) ( , , ), , ( , , )k k n m n m kx v x v x vφ µ φ µ φ µ+ += … , ( )v M x=  and:

2 2( , , ) ( ) 4i i k i i i i kx v x v x vφ µ µ= + − − + (37)

The optimality conditions of ( )gnlP  will hold if and only if 0φ =  and 0kµ = .  The

central path is defined as the ( , )x v  combinations such that 0φ =  for a sequence of non-

negative kµ . The Newton method is once again used to find a stationary point of the

optimization problem.  Reductions in kµ  are done in a predictor-corrector step

framework.  A predictor step, which attempts a reduction of kµ  to zero, is first used in

the iteration.  A corrector step is then utilized in which only a partial reduction in kµ  is

attempted.  It is called a “corrector” step because it is used to guide values closer to the

central path.

Note 1.  ( , , ) 0i i kx vφ µ =  if and only if 0ix ≥ , 0iv ≥  and 2
i i kx v µ=

Proof.  Let ( , , ) 0i i kx vφ µ = .

Then 2 2( ) 4i i i i kx v x v µ+ = − + .

Squaring both sides:  2 2 2 22 ( ) 4i i i i i i kx v x v x v µ+ + = − +     2     4 4      i i kx v µ⇒ = ⇒

2
i i kx v µ=  (38)

By (38), 0kµ ≠  implies ix  and iv  are non-zero and the same sign.

But , 0i ix v <  implies that ( , , ) 0i i kx vφ µ < . Therefore:
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0          , 0k i ix vµ ≠ ⇒ > (39)

By (38), 0kµ =  implies ix  and/or iv  equals zero. By (37), if 0φ =  and either ix  or iv  is

zero, then the other is non-negative.  Therefore 0x ≥ , 0v ≥  and 2
kxv µ= .  It is trivial to

see that if 2
i i kx v µ= , then ( , , ) 0i i kx vφ µ = . ,

Let:

1 1( ) ( , , )
( , , ) ( , , )     with   ( , , )

( , , )

k

k k k

k n n k

M x v x v
F x v x v x v

x v

φ µ
µ φ µ φ µ

µ φ µ

−   
   = =   
      

# (40)

Note 1 shows that (33)-(36) hold if and only if 0F = .  Newton's method leads to solving

(41) for the predictor step:

( , , ) ( , , ) 0k k

k

x
F x v F x v vµ µ

µ

∆ 
 + ∇ ∆ = 
 ∆ 

(41)

where:

( ) 0
( , , ) ( , , ) ( , , ) ( , , )

0 0 1
kk x k v k k

M x I
F x v x v x v x vµµ φ µ φ µ φ µ

∇ − 
 ∇ = ∇ ∇ ∇ 
  

Then solve the following for the corrector step:

0
( , , ) ( , , ) 0

(1 )
k k

k k

x
F x v F x v vµ µ

µ σ µ

∆   
   + ∇ ∆ =   
   ∆ −   

(42)

Proposition 2.  The Newton direction has a unique solution if and only if

( , , ) ( , , ) ( )x k v kx v x v M xφ µ φ µ∇ + ∇ ∇   is nonsingular.  This will occur if ( )M x∇  is positive
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semi-definite.  ( )M x∇  is positive semi-definite if ( )gnlP  is a convex programming

problem.

Proof.  The Newton direction has a unique solution if and only if there is a unique

solution to the following system of equations:

( ) 0
( , , ) ( , , ) ( , , )

0 0 1
kx k v k k

M x I u a
x v x v x v v b

w c
µφ µ φ µ φ µ

∇ −     
    ∇ ∇ ∇ =    
         

(43)

By (43):

w c= (44)

v Mu a= ∇ − (45)

By (43), (44) and (45):

( )
kx v vM u b a cµφ φ φ φ∇ + ∇ ∇ = + ∇ − ∇ (46)

Hence, there is a unique Newton direction if ( )x v Mφ φ∇ + ∇ ∇  is non-singular.

2 2
( , , ) 1

( ) 4i

i i
x i i k

i i k

x vx v
x v

φ µ
µ

−∇ = −
− +

(47)

2 2
( , , ) 1

( ) 4i

i i
v i i k

i i k

x vx v
x v

φ µ
µ

−∇ = +
− +

(48)

( )1 1 1( , , ) ( , , ), , ( , , )
nx k x k x n n kx v diag x v x vφ µ φ µ φ µ∇ = ∇ ∇… (49)

( )1 1 1( , , ) ( , , ), , ( , , )
nv k v k v n n kx v diag x v x vφ µ φ µ φ µ∇ = ∇ ∇… (50)

It can be seen from (47)-(50) that 0kµ >  implies:

( , , ) 0    and     ( , , ) is positive definite
ix i i k x kx v x vφ µ φ µ∇ > ∇ (51)
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( , , ) 0    and     ( , , ) is positive definite
iv i i k v kx v x vφ µ φ µ∇ > ∇ (52)

Therefore, ( )x v Mφ φ∇ + ∇ ∇  is non-singular if M∇  is positive semi-definite.

1 2

2 ' 0
M M

M
M

 
∇ =  − 

(53)

where:

2 2
1 0 ( ) ( ) 'M f x G x λ= ∇ + ∇

2 ( ) 'M G x= ∇

However:

[ ] 1'
u

u v M u M u
v
 

∇ = 
 

(54)

By (54), M∇  is positive semi-definite if and only if 1M  is positive semi-definite.

1M  is positive semi-definite if ( )gnlP  is a convex programming problem (see proof of

Proposition 1). ,

4. General Model Descriptions

Berger (2001) found solutions to discrete time, finite horizon, parameterized,

optimization versions of the three main types of vintage capital models.  These models

are referred to as putty-putty, clay-clay, and putty-clay models and vary according to the

substitutability of factors.  Putty refers to the ability to pair labor and capital in any

production ratio.  Clay refers to a fixed capital-labor ratio. The first word in each pair

refers to substitutability at the time of installation of the capital; and the second word

refers to the substitutability for all time after the installation.  For example, the term
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putty-clay refers to a model in which the capital-labor ratio for capital of a particular

vintage may be chosen at the time of installation, but for all time thereafter labor must be

used with that vintage of capital according to the chosen proportion.

Each of the three models is based on the basic consumption-savings model.  A

central planner of the economy chooses a time path of consumption with the objective of

maximizing the sum of discounted utility of the population, which is solely a function of

consumption.  Utility is represented by a finite, constant-elasticity-of-intertemporal-

substitution utility function:

( )11( ) 1              1
1

        ln( )                           1

t t

t

U C C

C

γ γ
γ

γ

−= − ≠
−

= =
(55)

The elasticity of intertemporal substitution equals 1
γ

− , and for fixed tC  this is a

continuous function of γ.

Output not consumed each period is invested and becomes capital that can be

used to increase production in future periods.  Each period in the putty-putty and clay-

clay models a static optimization takes place in which the central planner maximizes total

output given the capital stock, labor stock, and given parameters.  For non-vintage

models this allocation is trivial.  However, for vintage capital models this is a non-trivial

problem in which scarce labor must be assigned to the different vintages of capital.

The three models are based on a Cobb-Douglas production function:

1( , )v v v t v v vf N K d A N Kα α−= (56)
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where v represents the vintage, td  is the disembodied technology parameter, vA  is the

embodied technology parameter, and 0 1α< < . Total output for  period t is:

1
1

1

V t

t t v v v
v

f d A N Kα α
+ −

−

=
= ∑ (57)

where V is the number of vintages available in the initial period.. One advantage of the

putty-putty model with this production function is that the static optimization problem of

maximizing output giving existing resources can be written as a convex programming

problem with a strictly convex objective.  Therefore, since the problem has a nonempty

feasible set, there exists a unique global solution to maximize output each period.  This

solution, the indirect production function, can be written as a function of time t

parameters:

1 1( , )t t t t tf N Q N Qα α− −= (58)

where tQ  is an aggregated capital stock which is a weighted sum of the stocks of each

vintage (Appendix 1).  The clay-clay and putty-clay models maximize the output of the

same Cobb-Douglas function, but subject to a fixed capital-labor ratio, vr .  Therefore,

output corresponding to each vintage each period is:

( , ) min( , )tv tv tv tv tv tv tvf N K a N d K= (59)

where tv t v va d A rα=  and 1
tv t v vd d A rα −=  measure the productivity of labor and capital,

respectively.2  In the clay-clay model, tva  and tvd  are parameters, whereas in the putty-

                                                
2 td  and tvd  represent distinct concepts.  td  is disembodied technology corresponding to time period t

whereas tvd  is the productivity of capital and includes both embodied ( )vA  and disembodied technology.
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clay model the central planner can choose vr  thereby affecting the levels of tva  and tvd .

Unlike the putty-putty model, there are no closed-form solutions for the indirect

production functions in the clay-clay and putty-clay models.

The putty-putty and clay-clay models can be written as convex programming

problems with objective functions that are strictly convex in consumption.  Therefore

there is a unique global solution for consumption.  Consumption determines the time path

of output in these two models and therefore there is also a unique global solution to the

time path of output.  The putty-clay model, however, cannot be written as a convex

programming problem.  While the objective functions in all three models are the same,

the introduction of the capital-labor ratio choice variables in the putty-clay model leads to

a non-convex feasible set.  Therefore the same claim as to globalness and uniqueness of

solutions cannot be made for the putty-clay model.

5. Initialization of Algorithms

Initialization of the models in Berger (2001) is simple.  For the putty-clay model,

first choose arbitrary capital-labor ratios for each vintage. Consequently for all three

models, given a level of capital, labor, and parameter values in any given period, one can

determine the maximum level of output.  For the clay-clay and putty-clay models,

maximizing output involves an algorithm which first allocates labor to the most

productive capital until the capital-labor ratio is reached, and then allocating labor to the

second most productive capital, continuing down the capital spectrum until either labor or

capital run out.  For the initial period, output can be set to a fraction of maximum output,
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and consumption to a fraction of the chosen output.  Output and consumption determine

the following period's capital and therefore the procedure can be repeated for all of the

periods.  The slack variables should be set such that the optimality conditions are nearly

satisfied given the initialization of the other primal variables.  There is often no good

intuition for the initial guess of the dual variables except for which will be zero (set these

positive, but close to zero) and the relative scale of the others.

6. Putty-Putty Model

The putty-putty model examined in Berger (2001) is a discrete time version of the

Phelps (1962) model with a finite time horizon.  The Phelps model uses a constant rate of

savings, and is divorced from dynamic optimization unlike this model.  Technological

growth is exogenous. The following model already incorporates the static production

maximization, so that the production function given is the indirect production function

(Appendix).   The formal optimization problem is:

( )1 1

1

1

1
1

1

1Minimize     1
1

over     , ,      for 1
subject to:
     0

     0
     0
     0

     ( ) 0     for 1 1

T
t

t
t

t t t

t

t t t t

t t

t t t t t

C

C Y Q t T

C

Y d N Q
C Y
Q Q

Q Q A Y C t T

γ

α α

α

β
γ

− −

=

−

+

− −
−
=

− ≤

− ≤
− ≤

− ≤

− + − ≤ = −

∑
…

…

( )ppP

tC  is the chosen level of consumption in period t.  tY  is the chosen level of output in

period t.  tQ  is the level of the aggregate capital stock at time t.  tN  is the given labor
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stock each period.  Q  is the given level of aggregate capital in the initial period.  td  is

the given level of disembodied technology at time t.  tA  is the given level of embodied

technology corresponding to the vintage produced at time t.  T is the given total number

of time periods.

( )ppP  is a convex programming problem. It can be shown that ( )ppP  is equivalent

to a problem written in standard economic form, a maximization with the last four

constraints written as equalities.  The inequality constraints can be written as equalities

because there are no transaction costs associated with the use of capital for production, or

in carrying over capital and investment from previous periods into subsequent periods.

Therefore, at a solution, the production and dynamic constraints will hold with equality.

Results for the putty-putty model were obtained for 200T =  so that the barrier

form of the problem, as actually solved, had 1,800 primal variables (including 1,200

slack variables) and 1,200 dual variables (the number of constraints, including 600 non-

negativity constraints).  The value of the constant structure of the Jacobian of the

optimality conditions to the equilibrium barrier formulation (22) is apparent in that the

Newton direction can be found by inverting a 600 by 600 matrix, rather than the entire

3,000 by 3,0000 Jacobian.

7. Clay-Clay Model

The clay-clay model, also known as the Leontief or fixed factor production

model, is a discrete time variation of Solow, Tobin, Weizsäcker, Yaari (1966) with a

finite time horizon. Unlike in the putty-putty model, there is no aggregate capital stock
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because the embedded production maximization each period does not have a closed form

solution. Thus, each vintage must be tracked separately.  The capital stock in period t is a

vector of V+t-1 elements, where V is the number of vintages available in the initial period

( )1t = . The savings of period t becomes the quantity of capital of vintage V+t.

The production function, min( , )tv tv tv tv tvY d K a N= , where tvN  is labor in period t

assigned to capital of vintage v, can be equivalently written as two inequality constraints.

tv tv tvY a N≤ (60)

tv tv tvY d K≤ (61)

The equivalency of the “min” function to the two inequality constraints arises because

production will be maximized each period, for each vintage, given levels of labor and

capital assigned to each vintage, and therefore (60) and/or (61) must hold with equality at

a solution.

What does it mean if (60) does not hold strictly for time period t and vintage v, at

a solution?  It means that there is unproductive labor applied to vintage v.  This can only

be the case at a solution if there are no other vintages in that period to which the labor

could be applied and be productive. If this is the case, then tN , the labor available in

period t, could be increased arbitrarily without changing the optimal time path of

consumption and hence the optimal value of the optimization problem.  Since the labor

constraint each period, 1

1

V t
tv tv

N N+ −

=
≤∑ , is only relevant when (60) is binding, we can

substitute tv

tv

Y
a

 for tvN  in the labor constraint, eliminating tvN  as a choice variable.  This

yields the clay-clay model (a convex programming problem) solved in Berger (2001).
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( )ccP

In Berger (2001), results were obtained for 45T =  and with no depreciation of

capital.  Depreciation can be easily incorporated into the model by changing the diagonal

ones in the capital accumulation equation to fractional values.  Consumption and output

converge quickly to their equilibrium growth path in the clay-clay model, so 45 periods is

ample time to observe the behavior of the system.  Tracking each vintage each period

greatly increases the number of variables in the model.  The number of variables can be

decreased somewhat by writing the problem in reduced form, substituting for K with a

function of C, Y, and K .  The reduced form, equilibrium barrier formulation, with T=45

and 2V = , has 3,420 primal variables (including 2,295 slack variables), and 2,295 dual

variables.
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8. Putty-Clay

The putty-clay model is similar to the clay-clay model.  The primary difference is

that vr , the capital-labor ratio for each vintage v, is a choice variable.
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( )pcP

Unlike the putty-putty and clay-clay models, the putty-clay model can not be written as a

convex programming problem (the feasible set of is not a convex set).  Therefore, there

can be multiple solutions to the model, and they need not be global.  Berger (2001) does

in fact find multiple solutions to the putty-clay problem.

Finding the results for the putty-clay model is more difficult than for the previous

models.  Because the problem is not a convex programming problem, there is no

guarantee that the non-interior path-following algorithm will converge.  The algorithm is

highly sensitive to the initial guess, and often gets mired away from a solution.  In order
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to find solutions, it was necessary to use a bootstrapping method in which a solution was

found for a low value of T, and this solution was used as the basis for an initial guess to a

slightly longer problem.  This procedure was repeated until a solution to the desired

length problem was found.  Also, because r is to a fractional power, it must be restricted

to positive values in the algorithm.  However, limiting the step size to keep the capital-

labor ratio positive caused the program to stop progressing as the step size rapidly

approached zero.  So the primal variable vr  was replaced with vs  where vs
vr re−= , and r

is a user defined algorithm parameter.

Two types of solutions to the model were found.  One type has vr  constant from

an early time period through the terminal period. The results suggest that there may be a

local minimum for every constant level of vr  up to some threshold level.  To obtain

solutions of this type, it is possible to obtain a solution to a shorter horizon model, e.g.

T=10, find the constant vr , and then treat the problem as a clay-clay model using the

obtained capital-labor ratios.  When a solution to the 45 period clay-clay model is found,

it can be used as an initial guess for the putty-clay model (re-running the non-interior

point method is necessary in order to get the correct early period values for the 45 period

putty-clay model).  The non-interior method then only takes a few iterations to arrive at a

solution.

When r  is set sufficiently high, another solution type is obtained.  This solution

has vr  increasing over time.  This solution type also required bootstrapping to attain

solutions to longer time period problems.  Unlike for the constant capital-labor ratio

solution however, there is no way to use the more stable clay-clay model to help obtain
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the full 45 period solution.  The putty-clay model has more variables than the clay-clay

model because of the addition of 46 ( )1V T+ −  capital-labor ratio variables.

9. Conclusion

In Berger (2001) numerical results were obtained for the three basic utility-

maximizing growth models with vintage capital.  The fact that complete time paths of the

key economic variables were obtained for these models demonstrates the potential of the

algorithms discussed in this paper.  Given the specified parameter values, the results for

the putty-putty and clay-clay model are definitive since the models can be written as

convex programming problems with strictly convex objectives, and therefore have unique

global solutions.  The putty-clay model, however, cannot be written as a convex

programming problem and multiple local solutions were found.  Numerical results had

not been previously obtained for optimization, discrete time versions of these models.

It was also shown that for convex programming problems the Newton method

will be well defined for both the interior-point and non-interior point path-following

algorithms.  The results for the putty-clay model demonstrate both the difficulty, but also

the possibility of attaining results for general non-linear models.  The non-interior path

following algorithm was unstable when applied to this model, but using bootstrapping

techniques, solutions were found for the model.  The putty-clay model is a large scale

general non-linear model with several complications including fractional exponents.  For

smaller scale or convex programming problems, the non-interior method may be equally

or more effective than the interior point method.
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Models in economics are becoming increasingly complex.  It will not be possible

to find closed form theoretical solutions to many of these models.  Analyzing models

which more accurately reflect the world in which we live will require the use of

algorithms such as those outlined in this paper.
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Appendix 1: Discrete-Time, Vintage Capital Cobb-Douglas Production

Maximization

Each instant, a static optimization takes place in which given the stocks of

technology, labor, and capital, labor must be allocated to the different vintages of capital

in order to maximize production.  The formal problem is as follows:

1

1

1

Maximize                0 1

over      
subject to:
              0
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v v v
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v

v
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v
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Y A N K
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=

= < <
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≤

∑

∑

(62)

V is the newest vintage available.  vA  is the level of technology associated with vintage v.

vN , the sole choice variable, is the quantity of labor assigned to capital of vintage v.  N is

the total amount of labor available.  vK  is the amount of capital of vintage v available.

It is obvious that a solution will have 0vN >  because the marginal product of

labor of each vintage goes to infinity as vN  goes to zero.  Also, the total labor constraint

will hold with equality since the objective function rewards the use of labor with each

vintage and there is no cost of using labor.  The lagrangian for this problem is:

1

1 1
( ; )

V V

v v v v v
v v

L N A N K N Nα αλ λ−

= =

 = + − 
 

∑ ∑ (63)

A representative first order condition is:

(1 ) 0v v v
v

L A N K
N

α αα λ−∂ = − − =
∂

(64)



28

An equality can be used instead of an inequality, because 0vN >  at a solution.  (64)

states that the marginal product of labor of each vintage must be equal to the shadow

value of labor.  Labor, being homogeneous, has a unique shadow value regardless of the

vintage to which it is applied.  Setting two first order conditions for different vintages

equal to each other we obtain:

1 1
i i i j j jA N K A N Kα α α α− −= (65)

Solving for iN

1

i i
i j

j j

A KN N
A K

α   
=       
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(66)

This equation must hold true for every i given a fixed ,  ,j jA N  and jK .  Therefore,

summing over the iN :
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Solving for jN  in terms of the given parameters we obtain a closed form solution for

each choice variable:

1

*
1

1

j

j j
V

i i
i

NA K
N

A K

α

α

=

=

∑
(68)

Let:
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1

V
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i
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=

=∑ (69)
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Q can be viewed as an aggregated capital stock with the weights of each vintage a

function of the technology inherent in each vintage.

Substituting *
jN  into the direct production function, we obtain the indirect

production function, which is a function only of given parameters.

11
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